Stereoselective Radical-Mediated Cyclization of Norephedrine Derived α-Iodoamides: Experiments and TS-Modelling

Cesare Gennari*, Giovanni Poli, Carlo Scolastico* and Marco Vassallo

Dipartimento di Chimica Organica e Industriale, Università di Milano, Centro CNR per lo Studio delle Sostanze Organiche Naturali, via Venezian 21, 20133 Milano, Italy.

(Received 13 June 1991)

Abstract: Radical-mediated cyclization of norephedrine derived α -iodoamides 1 was found to be highly stereoselective ($\geq 97:3$) favouring diastereoisomer 2. Transition state modelling with a force field developed ad hoc, nucely predicts the stereochemical results.

The understanding of the factors that control relative stereochemistry in radical cyclization reactions is a topic of continuous interest.¹ As part of a long term project aimed at investigating the stereodirecting effects of allylic stereocentres in addition reactions (e.g. nucleophilic² and electrophilic³) to π -systems,⁴ we report in this Letter on the stereoselectivity of radical additions to double bonds⁵ (Scheme 1).

Scheme 1. Radical mediated cyclizations.

 α -Iodoamides 1 were synthesized as outlined in Scheme 2. Norephedrine 3 was treated with the suitable α chloroacyl chloride (Shotten Baumann) to give the α -chloroamide. Subsequent reaction with α , β -unsaturated dimethylacetals [refluxing benzene, pyridinium tosylate (Py-Ts), 4-Å mol. sieves] gave the corresponding oxazolidines in very good yield and high *cis* selectivity (Table 1).⁶ Substitution of the chloride with iodide (NaI, acetone) gave oxazolidines 1 in good overall yield.

Slow addition (6 hr) of a 0.08 M solution of Bu₃SnH (1.1 mol.eq.) in benzene containing a catalytic amount of AIBN (0.05 mol.eq.) to a 0.02 M refluxing benzene solution of α -iodoamide 1 (1 mol.eq.) gave, after work-up (KF-H₂O) and chromatography, bicyclic compounds 2 (Table 2).^{7,8,9}

The stereostructure of bicyclic compounds 2 was proved by careful analysis of the ¹H coupling constants, and by n.O.e. difference experiments [particularly between C2-H, C8-H, and C7-CH₂R]. The electrophilic nature of the α -carbamoyl radicals, in analogy with all radicals α -substituted with electronwithdrawing groups,^{1b} is well documented by the low cyclization yield in the case of the electron-poor olefin 1 [R=CO₂Me, R¹=H (Table 2, Entry 4)]. It is worth noting that the secondary radical generated from a racemic α -iodopropionate tether (Scheme 1, R^1 =Me) undergoes stereocontrolled cyclization to give γ -butyro lactam 2 [R=H, R^1 =Me (Table 2, Entry 3)] in which the newly formed stereogenic centre (C-6) bearing the original propionate methyl group is of high stereochemical purity ($\geq 97\%$ si face selectivity).^{5c}

Table 1. Cis-trans ratios and yields of Py-Ts mediated cyclizations $[3 \rightarrow 1]$.					
Entry	Compound 1	cis:trans (C-2/C-4) ratioa	cyclization yield (%)		
1	R=H; R ¹ =H	≥95:5 ^b	90		
2	R=Me; R ¹ =H	80:20 ^c	80		
3	R=H; R ¹ =Me	≥95:5 ^d	90		
4	R=CO ₂ Me; R ¹ =H	≥95:5 ^e	80		

^asee footnote 6. ^bbenzene, reflux, 10 hr, 0.25 mol.eq. Py-Ts. ^cbenzene, reflux, 13 hr, 0.25 mol.eq. Py-Ts. ^dbenzene, reflux, 14 hr, 0.25 mol.eq. Py-Ts. ^ebenzene, reflux, 70 hr, 0.40 mol.eq. Py-Ts.

Scheme 2. Synthesis of α -lodoamides 1.

R = H, Me, COOMe; $R^1 = H$ R = H; $R^1 = Me$

Table 2. Diastereomeric ratios and yields of radical-mediated cyclizations $[1 \rightarrow 2]$. ⁸						
Entry	Compound 2	trans-cis (C-7/C-8) ratio	si-re face (C-6) ratio	%yield		
1	R=H; R ¹ =H	≥97:3	-	55 ^{8a}		
2	R=Me; R ¹ =H	≥97:3	-	60 ^{8a,b}		
3	R=H; R ¹ =Me	≥97:3	≥97:3	80 <i>8c</i>		
4	R=CO ₂ Me; R ¹ =H	≥97:3	-	32 ^{8a}		

The stereoselectivity of the cyclization reactions was analyzed in detail with the application of MM-force field calculations to model transition structures.¹⁰ The model was based upon MM-X force field,¹¹ with new parameters and constraints devised from the following considerations: (a) a C(radical)-C(olefin) distance = 2.5 Å was imposed, 17% longer than the *ab initio* calculated value for the malononitrile radical addition to ethylene (2.14 Å);^{10g} (b) a rotational barrier (10.3 kcal mol⁻¹) was imposed around the C(radical)-C(carbonyl) bond^{12a} to mimick the experimental restrained rotation of α -carbamoyl radicals;^{12b,c} (c) a conformational preference was imposed^{13a} for the rotamer with the double bond eclipsed with the allylic hydrogen.^{13b}

This model corresponds to an "early" transition state, with the radical and the olefin trigonal carbon atoms slightly pyramidalized, which retains the conformational preferences of the starting functional groups (α -carbamoyl radical and olefin).^{15,16} Predictions of stereochemical ratios based on this model (Table 3) were in good agreement with the experimental results. It is interesting to observe that ground-state calculations (MM-X¹¹

or MMOD¹⁷) on reaction products 2 (*trans*) and on their C-7 epimers (*cis*) predict almost no selectivity (ΔE ca. 0.4 kcal mol⁻¹ in favour of the *trans*). One example [R=H; R¹=H (Table 3, entry 1)] is shown in Schemes 3 and 4.

Table	3. Prediction of	diastereomeric ratios based on transition	structure modelling. ¹⁴
Entry	Compound 2	trans-cis (C-7/C-8) ratio	si-re face (C-6) ratio
1	R=H; R ¹ =H	94:6 [∆E =1.9 kcal mol ⁻¹]	-
2	R≖Me; R¹=H	93:7 [ΔE =1.8 kcal mol ⁻¹]	-
3	R=H; R ¹ =Me	94:6 [∆E =1.9 kcal mol ⁻¹]	99:1 [∆E = 3.3 kcal mol ⁻¹]
4	R=CO ₂ Me; R ¹	=H 90:10 [ΔE =1.5 kcal mol ⁻¹]	-

Scheme 3. Transition structure models of the radical cyclization leading to compound 2 [R=H; $R^1 \approx H$ (Table 3, entry 1)].

Scheme 4. Ground state models of compound 2 [R=H; R¹=H (trans)] and its C-7 epimer (cis).

Acknowledgments: This work was supported by the Commission of the European Communities [Grant SC1*.0324.C(JR)], MURST (Rome), and CNR (Piano Finalizzato Chimica Fine II). We would like to thank Professor Clark Still (Columbia University) for a copy of the MacroModel programme, Professor K. Steliou (University of Montreal) for a copy of the PC-Model programme, and Professor A. Gamba (University of Milan)

for stimulating discussions.

References and Notes

- (a) Curran, D.P. Synthesis 1988, 417, 489. (b) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon bonds; Pergamon Press: Oxford, 1986. (c) Curran, D.P. in Comprehensive Organic Synthesis, Vol. 4; Trost, B.M. Ed.; Pergamon Press: New York, 1991.
- Synthesis, Vol. 4; Trost, B.M. Ed.; Pergamon Press: New York, 1991.
 (a) Bernardi, A.; Capelli, A.M.; Gennari, C.; Scolastico, C. Tetrahedron: Asymmetry 1990,1,21, and references therein. (b) Cardani, S.; Bernardi, A.; Colombo, L.; Gennari, C.; Scolastico, C.; Venturini, I. Tetrahedron 1988,44,5563.

- (a) Annunziata, R.; Cinquini, M.; Cozzi, F.; Gennari, C.; Raimondi, L.; J.Org. Chem. 1987, 52, 4674, and 3. references therein. (b) Bernardi, A.; Beretta, M.G.; Colombo, L.; Gennari, C.; Poli, G.; Scolastico, C. J.Org.Chem. 1985, 50, 4442. (c) Colombo, L.; Gennari, C.; Poli, G.; Scolastico, C.; deMunari, S. Tetrahedron Lett. 1985,26,5459.
- For recent leading references on this topic, see: (a) Houk, K. N.; Paddon-Row, M. N.; Rondan, N. G.; 4 Wu, Y. D.; Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.; Li, Y.; Loncharich, R. J. Science 1986, 231, 1108. (b) McGarvey, G.J.; Andersen, M.W. Tetrahedron Lett. 1990, 32, 4569. (c) Panek, J.S.; Cirillo, P.F. J.Am.Chem.Soc. 1990,112,4873. (d) Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L. J.Org. Chem. 1990, 55, 1901. (e) Dorigo, A.E.; Morokuma, K. J.Am. Chem. Soc. 1989, 111, 6524, and references therein.
- For a discussion on allylic asymmetric induction in radical addition to alkenes, see: (a) Paddon-Row, M.N.; 5. Rondan, N.G.; Houk, K.N. J.Am.Chem.Soc. 1982,104,7162. (b) Guindon, Y.; Yoachim, C.; Lemieux, R.; Boisvert, L.; Delorme, D.; Lavallee, J.-F. Tetrahedron Lett. 1990,31,2845, and references therein. (c) Hanessian, S.; Di Fabio, R.; Marcoux, J.-F.; Prud'homme, M. J.Org.Chem. 1990,55,3436.
- 6. The cis selectivity of Py-Ts mediated oxazolidine formation is a result of thermodynamic control for electron-rich olefins (R=H,Me) and of kinetic control for the electron-poor one (R=COOMe), see: Bernardi, A.; Cardani, S.; Pilati, T.; Poli, G.; Scolastico, C.; Villa, R. J.Org. Chem. 1988, 53, 1600.
- For radical mediated cyclizations to give y-butyro lactams, see: Ishibashi, H.; Su So, T.; Okochi, K; Sato, 7. T.; Nakamura, N.; Nakatani, H.; Ikeda, M. J.Org.Chem. 1991,56,95. See also: Ishibashi, H.; Nakamura, N.; Sato, T.; Takeuchi, M.; Ikeda, M. Tetrahedron Lett. 1991, 32, 1725, and references therein.
- 8. (a) In the case of R^1 =H, the major side-products of the Bu3SnH mediated reaction at 80°C were the reduction products (acetamides). Acetamides were the only isolated products when the reaction was run at room temperature.

(b) α-Iodoamide 1 [R=Me; R¹=H (Table 1, entry 2)] is a 80:20 (C-2/C-4) cis:trans mixture. The minor (C-2/C-4) trans isomer gave the cyclization product with high selectivity: trans-cis (C-7/C-8) ≥97:3; 60% yield; absolute configuration 2R, 3S, 7S, 8R.

(c) 1.5 mol.eq. of Bu₃SnH was used for the cyclization of

 α -iodoamide 1 [R=H; R¹=Me (Table 2; entry 3)]. When

1.1 mol.eq. was used, variable amounts of compound 2'

were formed as by-product of the radical cyclization reaction.

- 9. No endo-(6) ring closure product was observed, in contrast with the high endo-(6):exo-(5) ratios reported for the cyclization reactions of α -keto radicals (carbonyl group inside the forming ring), see: Curran, D.P.; Chang, C.-T. J.Org.Chem. 1989,54,3140.
- 10. For theoretical studies on radical cyclizations involving the application of MM2 Force Field calculations to model transition structures, see: (a) Beckwith, A.L.J.; Schiesser, C.H. Tetrahedron 1985,41,3925. (b) Beckwith, A.L.J.; Schiesser, C.H. Tetrahedron Lett. 1985,26,373. (c) Spellmeyer, D.C.; Houk, K.N. J.Org.Chem. 1987,52,959. (d) Singleton, D.A.; Church, K.M.; Lucero, M.J. Tetrahedron Lett. 1990,31,5551. (e) Broeker, J.L.; Houk, K.N. J.Org.Chem. 1991,56,3651. For ab initio studies, see: (f) Houk, K.N.; Paddon-Row, M.N.; Spellmeyer, D.C.; Rondan, N.G.; Nagase, S. J.Org.Chem. 1986,51,2874, and references therein. (g) Zipse, H.; He, J.; Houk, K.N.; Giese, B. J.Am. Chem. Soc. 1991,113,4324.
- 11. MM-X Force Field from PC-Model-PI, version 3.2 (Copyright Serena Software). See also: Advances in Molecular Modelling, Vol. 2; Liotta, D., Ed.; JAI Press Inc., 1990. 12. (a) The X-C(rad)-C(acyl)-Y torsional parameters were assigned values of V₁=0.0; V₂=2.9; V₃=0.0. (b)
- Strub, W.; Roduner, E.; Fisher, H. J. Phys. Chem. 1987, 91, 4379. (c) Wu, L.-m.; Fisher, H. Helv.Chim.Acta 1983,66,138.
- 13. (a) The H-C(stereocentre)-C(alkene)-C(alkene) torsional parameters were assigned values of $V_1 = -2.0$; $V_2=1.0$; $V_3=0.0$. (b) The rotamer with the allylic hydrogen eclipsed with the double bond is usually the most stable conformer for alkenes, see: Bond, D.; Schleyer, P.v.R. J.Org.Chem. 1990,55,1003. In 2alkenyl-oxazolidines this rotamer is favoured both in the crystal structure (X-ray, see ref.6) and in CDCl3 solutions (n.O.e. difference experiments). 14. Boltzmann distribution at 353°K (+80°C, refluxing benzene).
- 15. Because of the early transition state, factors that influence the ground-state alkene conformation would also be expected to influence the transition state in the addition reaction.
- 16. Details on the force field will be given in a full paper.
- 17. MacroModel (MMOD): Copyright Columbia University. See: Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comp. Chem. 1990, 11, 440.

