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Abstract: Radical-mediated cycliration of norephedrine derived a-iodoamides I was found to be highly 
stereoselective @7:3) favouring diasrereoisomer 2. Transition state modelling with a force field developed ad 
hoc, nicely predicts the stereochemical results. 

‘Ihe understanding of the factors that control relative stereochemistry in radical cyclization reactions is a topic of 

continuous interest.’ As part of a long term project aimed at investigating the stereodirecting effects of allylic 

stereocentres in addition reactions (e.g. nucleophilic* and electrophilic3) to K-systems,4 we report in this Letter 

on the stereoselectivity of radical additions to double bonds5 (Scheme 1). 

Scheme 1. Radical mediated cyclizatlons. 

Bu$SnH, AIBN, 

Benzene, reflux 

R = H, Me, COOMe; R’ = H 
R=H;R’=Me 

n-Iodoamides 1 were synthesized as outlined in Scheme 2. Norephedrine 3 was treated with the suitable a- 

chloroacyl chloride (Shotten Baumann) to give the a-chloroamide. Subsequent reaction with a&unsaturated 

dimethylacetals [refluxing benzene, pyridinium tosylate (Py-Ts), 4-A mol. sieves] gave the corresponding 

oxazolidines in very good yield and high cis selectivity (Table l).6 Substitution of the chloride with iodide (NaI, 

acetone) gave oxazolidines 1 in gocd overall yield. 

Slow addition (6 hr) of a 0.08 M solution of BugSnH (1.1 mol.eq.) in benzene containing a catalytic amount of 

AIBN (0.05 mol.eq.) to a 0.02 M refluxing benzene solution of a-iodoamide 1 (1 mol.eq.) gave, after work-up 

(IWH20) and chromatography, bicyclic compounds 2 (Table 2).7,89 

The stereostructure of bicyclic compounds 2 was proved by careful analysis of the ‘H coupling constants, and 

by n.0.e. difference experiments [particularly between C2-H, C8-H, and C7-CHzR]. The electrophilic nature of 

the a-carbamoyl radicals, in analogy with all radicals a-substituted with electronwithdrawing groups,lb is well 

documented by the low cyclization yield in the case of the electron-poor olefin 1 [R=COzMe, Rl=H (Table 2, 

Entry 4)]. It is worth noting that the secondary radical generated from a racemic a-iodopropionate tether (Scheme 
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1, R1=Me) undergoes stereocontrolled cyclization to give ‘y-butyro lactam 2 [R=H, Rt=Me (Table 2, Entry 3)] in 

which the newly formed stereogenic centre (C-6) bearing the original propionate methyl group is of high 

stereochemical purity (2 97% si face selectivity).5c 

Table 1. Cis-frans ratios and yields of Py-1s mediated cyclirations [3-r 11. 

Entry Compound 1 ckfrans (C-2/C-4) ratioa cyclization yield (%) 

1 l&H; Rl=H >95:5b 90 

2 l&Me; Rl=H 80 :2oc 80 

3 R=H; R’=Me >95:5d 90 

4 R=C02Me; Rl=H >95:5e 80 

see footnote 6. benzene, reflux, 10 hr. 0.25 mokq. Py-Ts. %enzene, reflux, 13 hr. 0.25 mol.eq. E’y-Ts. dbcnzene, reflux, 
14 hr, 0.25 mol.eq. Py-Ts. ebenzene, reflux, 70 hr. 0.40 molq. Py-Ts. 

Scheme 2. Synthesis of a-lodoamides 1. 

Me a) R’CHCICOCI, H,O. NaOH (90%) 

w 

b) RCH=CHCH(OMe)2, Py-Ts, benzene 
reflux, 4-a MoLSieves (80-90%) 

c) Nal, acetone (85%) 1 

R = H, Me, COOMe; R’ = H 

R=H:R’=Me 

3 R=H; Rl=Me 297 13 297:3 80& 

4 R=COzMe; Rl=H >97:3 32& 

The stereoselectivity of the cyclization reactions was analyzed in detail with the application of MM-force field 

calculations to model transition structures. loThe model was based upon MM-X force field,11 with new 

parameters and constraints devised from the following considerations: (a) a C(radical)-C(olefin) distance = 2.5 i 

was imposed, 17% longer than the ab initio calculated value for the malononitrile radical addition to ethylene 

(2.14 &log (b) a rotational barrier (10.3 kcal mol-1) was imposed around the C(radical)-C(carbony1) bondlh to 

mimick the experimental restrained rotation of a-carbamoyl radicals; 12b.c (c) a conformational preference was 

imposedlsa for the rotamer with the double bond eclipsed with the allylic hydrogent3h 

This model corresponds to an “early” transition state, with the radical and the olefin trigonal carbon atoms 

slightly pyramidalized, which retains the conformational preferences of the starting functional groups (a- 

carbamoyl radical and olefin). 15.16 Predictions of stereochemical ratios based on this model (Table 3) were in 

good agreement with the experimental results. It is interesting to observe that ground-state calculations (MM-X1 t 
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or MMODl7) on reaction products 2 (trans) and on their C-7 epimers (cis) predict almost no selectivity (AE ca. 

0.4 kcal mol-1 in favour of the tram). One example [R=H, Rt=H (Table 3, entry l)] is shown in Schemes 3 and 

4. 

Table 3. Predletion of diastere 

Entry Compound 2 frans-cis (C-7/C-8) ratio si-re face (C-6) ratio 

1 l&H; F&H 94:6 [AE =1.9 kcal mol-‘1 

2 R=Me; RLH 93:7 [AE =i .8 kcal mol-11 

3 R=H; Rl=Me 94:6 [AE =1.9 kcal mol-‘1 99:l [AE = 3.3 kcal mol-‘1 

4 R=COsMe: RLH 9O:lO IAE cl.5 kcal mol-11 

Scheme 3. Transition structure models of the radical cycllzation leading to compound 2 [F&H; 

Fl’=H (Table 3, entry l)]. 

C-7/C-8 trans 

Scheme 4. Ground state models of compound 2 [FkH; R’=H (tfans)] and Its C-7 epimer (c/s). 

0.0 kcal mol.’ c-7/c-s truns C-7/C-8 eis 0.4 kcal mol.’ 
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